Moduli Stacks of Étale (ϕ, Γ)-Modules and the Existence of Crystalline Lifts

Emerton, Matthew ; Gee, Toby

$85.00
$60.98

Adding to cart… The item has been added
Author
Emerton, Matthew ; Gee, Toby
Publish Date
2022-12-13
Subtitle
(Annals of Mathematics Studies, 215)
Book Type
Paperback
Number of Pages
312
Publisher Name
5006
ISBN-10
069124135X
ISBN-13
9780691241357
citemno
259972
SKU
9780691241357

Description

A foundational account of a new construction in the p-adic Langlands correspondence

Motivated by the p-adic Langlands program, this book constructs stacks that algebraize Mazur’s formal deformation rings of local Galois representations. More precisely, it constructs Noetherian formal algebraic stacks over Spf Zp that parameterize étale (ϕ, Γ)-modules; the formal completions of these stacks at points in their special fibres recover the universal deformation rings of local Galois representations. These stacks are then used to show that all mod p representations of the absolute Galois group of a p-adic local field lift to characteristic zero, and indeed admit crystalline lifts. The book explicitly describes the irreducible components of the underlying reduced substacks and discusses the relationship between the geometry of these stacks and the Breuil–Mézard conjecture. Along the way, it proves a number of foundational results in p-adic Hodge theory that may be of independent interest.